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1 Problem 1
1.A

Among the numerous tips offered in formal proof writing, the three that stand out to me the most
are ”Separate mathematical symbols and expressions with words”, ”Use the first person plural”, and
”Explain each new symbol”.!

1. ”Separate mathematical symbols and expressions with words”. Many of the proofs
I write don’t have enough text connecting the symbols with words, often leaving ambiguous
terms for someone who isn’t familiar with the problem. By adding words between mathematical
symbols, it can clarify my intentions and separate ideas that aren’t meant to appear concurrently.

2. ”Use the first person plural”. By using pronouns such as "we” and "us” it will help the
reader feel as if I am guiding them through my work. Proofs tend to be very difficult to parse
through and using these pronouns can help make them more clear and seem less daunting overall,
as if I am trying to help the reader understand not make it more confusing.

3. ”Explain each new symbol”. In many of my proofs, I introduce new symbols or call the
product of many variables a new variable, without saying what I am doing. Instead of saying:
n = 2k, ko followed directly by, n = 2ks, ks € R, I can instead write: Since for a number to be
even, it has to be a multiple of 2, we can write k1ko as a new variable, k3.

1.B Example Proof Without Standard Guidelines

Theorem 1. If A is a non-empty set and R is an equivalence relation on A, then the set of equivalence
classes of R partition A.

Proof. In the set A, every element belongs to an equivalence class. Let a € A, then a € [a]r because
R is reflexive. Consider the two equivalence classes: [a], [b]. For A to be written as the disjoint union
of its equivalence classes, the classes have to be equal or disjoint. Consider the following cases:

Case 1)

then we’re done.
Case 2)

[a] N [0] # 0

meaning there is an intersection. If there is an element y € [a], we can write aRy. Similarly, if there is
an element y € [b], we can write bRy.By transitivity and symmetry of equivalence, aRb, which means
a is related to b. By symmetry, b is also related to a. Since there is a relation between [a] and [b], if we
pick an element ¢ € [a], we can write cRa, since aRb, we can write bRa for every ¢ € [a], this means
that [a] C [b]. Similarly, we can pick any element ¢ € [b]. We can write ¢Rb and cRa. This means
that [b] C [a]. Since [a] C [b] and [b] C [a], [a] = [b]. Therefore A is the union of disjoint equivalence

classes because the classes are either equal or do not intersect. O

1.C Improved Version with Standard Guidelines

Theorem 2. If A is a non-empty set and R is an equivalence relation on A, then the set of equivalence
classes of R partition A.

1Richard Hammack. Book of Proof. 3rd. Virginia Commonwealth University, 2018.



Proof. Let a € A be an element in the set A. Since we defined an equivalence relation R on A,
Va € A, we know that aRa because R is reflexive, so we can can say every element a € A is related
to itself. This implies Va € A, by reflexivity, a € [a]g, meaning every element in the set A belongs to
an equivalence class. Consider two equivalence classes of A: [a], [b]. For the set of equivalence classes
of R to partition A, the classes must be either equal or disjoint. The trivial case, where [a] N [b] = 0,
requires no further evaluation. The non-trivial case, where [a] N [b] # @) implies 3 common elements
between the sets. Let y € [a] be an element in the equivalence class [a]. By the equivalence relation,
we can write aRy, so there is a relation between a and y. Since we are assuming that the intersection
between the two equivalence classes [a] and [b] we know that the element y € [a] is also in [b]. Similarly,
we can define a relation between y and b as bRy. By definition of an equivalence relation, we can use
symmetry to write yRb. By transitivity, since we know aRy and yRb, we also know that aRb. Let ¢
be an element in [a], the relation is cRa. By transitivity, since we have cRa and aRb, we know cRb.
Since we know that Ve € [a], cRb, we can conclude that [a] C [b]. Similarly, let d € [b] be an element
in the equivalence class [b]. Since c¢Rb and aRb, we can write cRa. By this, Vd € [b], cRa, we can

conclude that [b] C [a]. Since we know that [a] C [b] and [b] C [a], we can conclude that [a] = [b].
Therefore A is the disjoint union of equivalence classes of R partition A. O
Improvements

In the improved version of the proof, I considered the standard guidelines for proof writing. I made
sure not to start any sentence with a mathematical symbol and ended every sentence with a sentence
with a period even if it had a mathematical symbol. I made sure to clarify any new symbols and be
more explicit with the new letters I was introducing, for example "Let y € [a] be an element in the
equivalence class [a].” I made sure to say what y actually was instead of just moving on.



2 Problem 2

2.A Symmetry and Multiplication Tables

Definition 1 (Symmetry). An undetectable motion - an object is symmetric if it has symmetries. 2

This definition of symmetry allows us to very concretely think about what symmetry really means.
Goodman uses the image of a rectangular carpet to explain symmetry, where he says if you were to
leave the room and the carpet were to be flipped by 180 degrees, it would look the same as before.
Similarly, if nothing were to be done, the carpet would also look the same.

Multiplication tables allow us to understand how composition of symmetries affect the object that
undergoes the symmetry. Goodman says that the result of two symmetries, one right after another,
is alao a symmetry.? This becomes very apparent with a multiplication table. Consider the following
table for the symmetries of the rectangle group, with the notation we used in class (R = {e,r, s, sr}).

*le|r|s|sr
e|e|r|s|osr
r T e Sr
s | s|sr]e
sr{sr|s |1 | e

Multiplication tables make symmetry clear by showing what happens when you compose symme-
tries together. Each entry in the table, represents the composition of the row symmetry and column
symmetry. Consider the first row and first column, where the symmetry is e. When you compose
two transformations that both don’t change the object, the composition of them is as expected, the
object remains unchanged. This seems very simple, but shows the power of the multiplication table
to represent composition of symmetry, which is otherwise difficult to think about. This table itself
even reflects symmetries, consider the diagonal. Every entry on the diagonal is e and the rest of the
table are reflections across that diagonal. This is due to the fact that the symmetry of the rectangle
group under this construction is abelian, and the diagonal is due the idea that every element in the
group has order 2, namely Va € R, a? = e, excluding the identity element e. Consider a less intuitive
composition, s and sr. This is the same as reflecting the rectangle, reflecting it again, and then
rotating it by 7. This is equivalent to just rotating it by =, because reflecting it twice will result in
no change, as seen by the table.

Remark 1. Abstraction is used, applying the concept of a group to something very concrete, the
rotating and reflecting of a rectangle.

2.B How Groups Are Related

Goodman emphasizes that the importance of abstraction is being able to take very abstract phenomena
and treat define ways to order them, with set rules that are proved and don’t require subsequent proof.
He stresses the idea that we can compare different groups. The three ways groups can be related are
through isomorphisms, homomorphisms, and subgroups.

1. Isomorphism - Goodman describes the way groups can be essentially the same as an isomor-
phism. An isomorphism between two groups is when every element in one group is mapped to
exactly one element in a different group. Namely, we can essentially write the multiplication of
two groups the same with the switch of notation. Consider the two groups, G and M, these
groups are isomorphic if there is a surjection and injection between them. For an injection to
exist, the elements in G need to be mapped to exactly one element in M. For them to be surjec-
tive, every element in M must be mapped by an element in G. For there to be an isomorphism,
these both need to be true.

2Frederick Goodman. Algebra: Abstract and Concrete. Prentice-Hall, 2003.
3Goodman, see n. 2.




Definition 2 (Isomorphic). Two groups G and H are said to be isomorphic if there is a bijective
map [ : H — G between them that makes the multiplication table of one group match up with
the multiplication table of the other.

Consider the multiplication tables for the integers modulus 4 and the symmetry of a square:

7/47 Symmetry of Square
+ ‘ 0 1 2 3 x| e r r2 o
0]0 1 2 3 el e r r2 o3
1{1 2 3 0 r roor2 o3 e
212 3 0 1 r2lr2 B e r
313 0 1 2 Bl e 2

As seen from these tables, we can create a map from each unique element in Z,4 to the symmetry
of the square (bijective map), forming an isomorphism.

2. Homomorphism - Goodman describes another way that groups can be related, through ho-
momorphisms.

Definition 3 (Homomorphic). A map f: H — G between two groups is a homomorphism if f
takes products to products, identity to identity, and inverses to inverses.

This means that two groups can be related if one group preserves the group operation, but isn’t
necessarily injecective or surjective. An isomorphism is a special case of a homomorphism that
is bijective. To check for a homomorphism, it is sufficient to show that f(ab) = f(a)f(b).

3. Subgroups - The third way groups can be related is if one is a subgroup of another, that is, it
is contained in the original group, but also forms a group under the same binary operation. For
example, the symmetry of the square card given by G = {e,r,7%,r3} is a subgroup of the entire
square group given by H = {e,r, 72,13, s, sr,sr%, sr3}. Each element of G is contained in H and
H has the same operation and forms a group, therefore it is a subgroup under composition of
Symimetry.

2.C Euler’s Theorem
Theorem 3. Fiz a natural number n. If a € 7 is relatively prime to n, then a¥™ =1 (mod n).

Abstraction is a very powerful technique. We have all of these properties and ideas formed around
groups, which we can then apply to other problems. The example at the end of this section does that
exactly.

Lemma 1 (Euler’s Theorem). The set ®(n) of elements in Z, possessing a multiplicative inverse
forms a group (of cardinality ¢(n)) under multiplication, with identity element [1].

Goodman notes that since this forms a group, we can use all of the properties of groups that
we know (identity, inverse, closure, associativity). He then uses these to reprove Euler’s Theorem
(Theorem 3). When trying to show that elements [a], [b] € ®(n), the product [ab] is also in ®(n), he is
able to show the formation of ®(n) as a group. In his proof, he says "It is clear that [1] € ®(n). Now
since multiplication is associative on Z,, it is also associative on ®(n), and since [1] is a multiplicative
identity for Z,, it is also a multiplicative identity for ®(n). Finally, every element in ®(n) has a
multiplicative inverse, by definition of ®(n). This proves that ®(n) is a group.” By understanding
®(n) as a group, something like invertibility is trivial, which can make very complicated proofs much
simpler. By understanding something as a group, a very abstract construct, we can use very handy
properties of it.



2.D Application to Cryptography

We established in the previous section that abstraction allows us to use group theory in unexpected
ways. One of those unexpected ways is in cryptography, which involves encrypting and decrypting
messages. One of the most widely used cryptography methods is the RSA public key cryptography.
The idea behind it is to use products of very large prime numbers and come up with four other numbers
n,m,r,s where n and r are shared and the original two primes p, ¢ and the other two numbers m, s
are kept secret. Part of the encryption/decryption process is using number theory to pick numbers
that are relatively prime and congruences, and when this is applied to very large numbers, it ensures
the security of the system. Group theory is also used:

"Let p and ¢ be distinct prime numbers. Let n = pg. Recall that ¢(n) = ¢(p)e(q) = (p—1)(¢—1).
The least common multiple m of p— 1 and g — 1 is ¢(n)/ged(p — 1,q — 1). Group theory and Euler’s
Theorem are being used here, to pick meaningful encryption numbers. Algebra and group theory help
keep the digital world safe through the many useful properties and applications.



3 Problem 3

Proposition 1. If G is a group (not necessarily finite) and H is a normal subgroup of G, then
G/H = {aH|a € G} the set of left cosets of H in G is a group under the operation (aH)(bH) = (ab)H.
G/H (read as G mod H ) is called a quotient group.

3.A Equivalence Relation Proof

Let G be a group and H be a normal subgroup of G. Show that R is an equivalence relation on G
where R is defined by

aRb=a 'be H

Proof. To show that R is an equivalence relation, we need to show that it is reflexive, symmetric, and
transitive.

1. Reflexive - for a relation to be reflexive, it needs to satisfy that aRaVa € S where S is the set
of elements. aRa < a 'a € H. Since ¢~ 'a = e and e € H, R is reflexive.

2. Symmetric - for a relation to be symmetric, it needs to satisfy the following: If a,b € S and
aRb implies bRa. From aRb, we know that a~'b € H by construction. We want to show that
b~la is also in H. Since we know that H is a normal subgroup and we know that a='b € H, we
can take the inverse of it: (a=1b)~!. This is equal to b~'a, which is exactly what we wanted to
show. Therefore R is symmetric.

3. Transitive - Finally, to show this is an equivalence relation, we need to show it is transitive.
For it to be transitive, we need to show that if we have aRb, bRc, that implies aRec. If we have
aRb and bRc, then we can know that a~'b and b~'c are both in H. Since H is closed under
multiplication, the product of these becomes: a~'bb~'c = a~'c. This must be in H since it is
closed under multiplication. Therefore R is transitive and since it satisfies reflexivity, symmetry,
and transitivity, it is an equivalence relation.

O

3.B Equivalence Class - Coset Proof

Show that the equivalence classes of R are exactly the left cosets of H in G

Proof. Let L, be an equivalence class of R, and y € L,. Since y is in an equivalence of R, we know
that aRy < a~1ly € H. We can write this as y = ey = aa~1y. Let h = a~'y, then we can write ah.
Since we know that a 'y € H, we know that h € H. Since we know that y = ah and h € H, we can
conclude that the equivalence class L, C aH. Similarly, let y = ah € aH. Left multiplying by a=!
gives us a~ly = a~lah = h. Since h € H, then a~'y € H. This means that L, C aH. Since we know
aH C L, and aH C L,, then we can conclude that aH = L,, the equivalence classes of R are exactly
the left cosets of H in G. O

3.C Group Construction Proof

Define G/H as the set of left cosets of H. Prove that G/H is a group under the operation (aH)(bH) =
(ab)H

Proof. To show that G/H is a group under the operation (aH)(bH) = (ab)H, we need to show it
is associative, closed under the operation, there exists an identity element, and each element has an
inverse. Starting with associativity, let aH,bH,cH € G/H. We want to show that (e HbH)cH =



aH(bHcH). Using the group operation for the left side we get: (ab)HcH = abcH. For the right side
we get: aH(bc)H = abcH. Since these sides are equal, G/H is associative. Next we have to check
closure. Since G is closed, we know that a,b,ab € G. Since (aH)(bH) = (ab)H and a,b,ab € G,
we know that the left coset abH € G/H, so this set is closed. Next we need to show 3 e such that
ea = ae = a. By the defined operation, we know that (eH)(aH) = (eaH) = aH. Similarly, we
know that (aH)(eH) = (ae)H = aH, therefore there is an identity element, eH. Finally, we need to
show that there is an inverse for each element in G/H such that aa=! = a~'a = e. By the defined
operation, (aH)(a"'H) = aa=*H = eH. Similarly, (a"'H)(aH) = (a=*aH) = eH. Therefore each
element has an inverse and G/H forms a group under the defined operation. ]

3.D Normal Subgroup Proof
Let G = Z under addition and H = 5Z. Show that H is a normal subgroup of G.

Proof. To show that H is a normal subgroup of G, we must show that it is a commutative group.
First we check that 57 forms a group under addition. It is closed under addition because the sum
of two integers is an integer. There is an identity element 0, where a € H, a+0=04+a = a. It is
associative because addition of integers is associative. Finally, there is an inverse for every element.
Consider a € H, 4 — a such that a + —a = 0.

Lemma 2. If G is commutative group, then every subgroup of G is normal. By definition gHg™ ' =

{ghg™'|h € H}. Since we know g,g~' € G and G is commutative by assumption, we can write
ghg™' = gg'h = eh = h. Therefore we can say that gHg™" C H. Similarly, we can say Yh €
H,h =eh =gg'h =ghg~'. This means that H C gHg~'. Finally, we can conclude, gHg™' = H.
Therefore, if G is a commutative group, then every subgroup of G is normal.

Since G is the set of integers, we know by the axioms that addition is commutative. From this we can
conclude that G is a commutative group. By Lemma 2, since we know G is a commutative subgroup,
we can conclude that H is a normal subgroup. O

3.E Z/57Z Multiplication Table

Based on proposition 1, we can understand this quotient group as the left cosets of H (a normal
subgroup) in G. In this case, the normal cosets are 0 4+ 5Z, 1 + 5Z, 2 + 5Z, 3 + 5Z, 4 + 5Z. The
operation is addition, which gives us the following multiplication table.

+/0 1 2 3 4
0j0 1 2 3 4
171 2 3 4 0
212 3 4 0 1
313 4 0 1 2
414 0 1 2 3

Remark 2. Quotient groups allow us to form new groups by taking the cosets of a normal subgroup
and allows to understand groups through their cosets. By breaking a group down into its cosets, it
allows us to understand the breakdown of the group, and the cosets allow us to see elements that are
related in some way.

3.F Connection between 7 /57 to Zs;

7./5Z is essentially Zs, the integers modulus 5, which we have dealt with many times. Since they have
the same elements and operation, they behave the same way. Z/5Z offers a new way of viewing Zs,
through the cosets and normal groups.
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