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Introduction and Background 

This paper is an informative text on one solution to the non-elementary antiderivatives of the 
Gaussian integral and the Sin integral. The Gaussian integral (also known as the error function) 
is 𝑒−𝑥2, the Sin integral (also known as the Sinc function) is sin⁡(𝑥)

𝑥
, and the Bernoulli Integral is 

𝑥−𝑥. These functions have various applications in areas such as statistics and electrical 
engineering.  

 

Elementary Antiderivatives  

Elementary functions are polynomials, rational functions, power functions, exponential 
functions, logarithmic functions, trigonometric functions, and inverse trigonometric functions. 
These can all have an antiderivative that can be evaluated using normal means of calculus.  

 

Example 1.  

∫𝑥2𝑑𝑥 =
1
3𝑥

3 + 𝑐 

While this is a very simple example, it demonstrates the antiderivative, or the integral of a very 
simple function. Examples 1 and 2 (shown below) are examples of elementary integrals.  

Example 2.  

∫𝑒2𝑥𝑑𝑥⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑢 = 2𝑥⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑑𝑢
2 = 𝑑𝑥 

1
2
∫𝑒𝑢𝑑𝑢 =

𝑒2𝑥

2 + 𝑐 

Non-Elementary Antiderivatives  

While most functions have an elementary antiderivative, not all functions do. Those functions 
who don’t are called non-elementary functions. This means that when evaluating the 
antiderivative, normal means of calculus can’t be used to fully solve them.  

 

Improper Integrals  

In simple terms, an integral is improper if its upper bound, lower bound, or both are infinite.  

Example 3.  

∫ 𝑓(𝑥)𝑑𝑥 = ⁡ lim
𝑎→∞

∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

∞

0
 














































































































Using a limit as “a” approaches infinity is the proper way to express an improper integral.  

Evaluation of the Gaussian Integral  
The Gaussian function, 𝐼(𝑥) = 𝑒−𝑥2is a non-elementary function; this means normal means of 
evaluating integrals will not suffice. This integral is evaluated from -∞ to ∞.  

𝐼 = ∫ 𝑒−𝑥2𝑑𝑥
∞

−∞
 

 

At first glance, you might be tempted to use u-substitution. But that will not work here. Since 
this is non-elementary, other means must be used.  

Since this integral is equal to “I”, we can square “I” and make it two integrals.  

𝐼2 = ∫ 𝑒−𝑥2𝑑𝑥
∞

−∞
∫ 𝑒−𝑦2𝑑𝑦

∞

−∞
 

Rewrite as:  

𝐼2 = ∬𝑒−𝑥2 ∙ 𝑒−𝑦2𝑑𝑦𝑑𝑥
∞

−∞

 

𝐼2 = ∬𝑒−(𝑥2+𝑦2)𝑑𝑦𝑑𝑥
∞

−∞

 

Replace 𝑥2 + 𝑦2 = 𝑟2 

When converting from cartesian to polar coordinates, the Jacobian r is introduced into the 
integral and the bounds of integration change.  

𝐼2 = ∫ ∫ 𝑒−𝑟2𝑟⁡𝑑𝑟𝑑𝜃
2𝜋

0

∞

0
 

∫ ∫ 𝑒−𝑟2𝑟⁡𝑑𝑟𝑑𝜃
2𝜋

0

0

−∞
 

Evaluating the inner integral first, this becomes a single variable integral.  














































































































2𝜋∫ 𝑒−𝑟2𝑟⁡𝑑𝑟𝑑𝜃
0

−∞
⁡⁡⁡⁡⁡⁡⁡⁡𝑢 = −𝑟2 ⁡⁡⁡⁡⁡⁡⁡⁡

𝑑𝑢
−2𝑟 = 𝑑𝑟 

 

𝜋∫ 𝑒𝑢
0

−∞
𝑑𝑢 

Applying the Fundamental Theorem of Calculus:  

𝜋[𝑒0 − 𝑒−∞] = 𝜋  

Recall that this is the solution for 𝐼2, therefore, to get the solution for 𝐼, we square root both 
sides.  

𝐼 = √𝜋 

Therefore, ∫ 𝑒−𝑥2𝑑𝑥 = √𝜋
∞
−∞  

 

 

Evaluation of the Sinc Function 

The sinc function is defined as𝑓(𝑥) = sin⁡(𝑥)
𝑥

.  

 

An important concept to understand when evaluating integrals if whether the function is even or 
odd.  

A function is even if 𝑓(−𝑥) = 𝑓(𝑥).⁡ 

If a function is even, ∫ 𝑓(𝑥)𝑑𝑥 = 2∫ 𝑓(𝑥)𝑑𝑥∞
0

∞
−∞ .  

sin⁡(−𝑥)
𝑥 =

−sin⁡(𝑥)
−𝑥 =

sin⁡(𝑥)
𝑥  

Since this function is even, we can evaluate it from 0 to ∞.  














































































































We will be using Feynman’s Technique to evaluate this integral. Feynman’s Technique 
introduces another parameter to the function to make integrating possible. Feynman’s Technique 
says we can find the area under the curve by taking the derivative of the integral.  

∫
sin⁡(𝑥)

𝑥 𝑑𝑥
∞

0
 

𝐼(𝑎) = ∫ 𝑒−𝑎𝑥 ∙ sin⁡(𝑥)
𝑥

∞
0 dx  

Now we differentiate.  

𝐼′(𝑎) =
𝑑
𝑑𝑎

∫ 𝑒−𝑎𝑥 ∙
sin⁡(𝑥)

𝑥

∞

0
𝑑𝑥 

When taking the derivative with respect to “a” of an integral with respect to “x” we can take the 
partial derivative with respect to “a”.  

∫ 𝜕
𝜕𝑎
𝑒−𝑎𝑥 ∙ sin⁡(𝑥)

𝑥
∞
0 dx  

When taking the partial derivative with respect to “a”, x is treated as a constant.  

𝐼′(𝑎) = ∫ −𝑥𝑒−𝑎𝑥 ∙
sin⁡(𝑥)

𝑥

∞

0
𝑑𝑥 

This leaves us with an integral we can evaluate using Laplace Transforms.  

Note, the Laplace transform for 𝑒−𝑎𝑡 sin(𝑏𝑡) 𝑑𝑡⁡is 𝑏
(𝑠+𝑎)2+𝑏2

.  

𝐼′(𝑎) = ∫𝑒−𝑎𝑥 sin(𝑥) 𝑑𝑥 

𝐿{𝐼′(𝑎)}⁡ = ⁡
−1

1 + 𝑎2 

As shown, the Laplace Transform easily evaluates the integral and saves using integration by 
parts twice.  

Now that we have 𝐼′(𝑎), we must integrate both sides.  

∫𝐼′(𝑎) = −∫
1

1 + 𝑎2 𝑑𝑎 

𝐼(𝑎) = − tan−1(𝑎) + 𝑐 

Now we have to solve for c.  

𝐼(0) = 𝑐 

𝐼(∞) = −tan−1(∞) + 𝑐 














































































































𝑐 =
𝜋
2 

𝐼(𝑎) = tan−1(𝑎) +
𝜋
2 

Therefore,  

∫
sin⁡(𝑥)

𝑥 𝑑𝑥
∞

0
=
𝜋
2 

 

∫
sin⁡(𝑥)

𝑥 𝑑𝑥 = 𝜋
∞

−∞
 

 

 

Evaluation of the Bernoulli Integral 
The Bernoulli Integral is the third and final non-elementary integral we are going to evaluate. 
The Bernoulli Integral: ∫ 𝑥−𝑥𝑑𝑥1

0 . This integral requires an even further understanding of topics 
in calculus such as infinite series and the Gamma Function.  

 

 

The Gamma Function  

𝛤(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
∞

0
 

This function is also known as the factorial function.  














































































































𝛤(𝑛) = (𝑛 − 1)! 

Keeping this in mind, we can begin evaluating the integral.  

 

 

∫ 𝑥−𝑥𝑑𝑥
1

0
 

∫ 𝑒ln⁡(𝑥)−𝑥𝑑𝑥
1

0
 

Using properties of logarithms:  

∫ 𝑒−𝑥𝑙𝑛(𝑥)𝑑𝑥
1

0
 

Recall the power series for 𝑒𝑥:  

𝑒𝑥 = ∑
𝑥𝑛

𝑛!

∞

𝑛=0

 

Now we are going to substitute 𝑥 for −𝑥𝑙𝑛(𝑥). 

∫ ∑
(−𝑥𝑙𝑛(𝑥))𝑛

𝑛!

∞

𝑛=0

1

0
𝑑𝑥 

Because of uniform convergence, we can swap the integral and the summation.  

∑∫
(−𝑥𝑙𝑛(𝑥))𝑛

𝑛! 𝑑𝑥
1

0

∞

𝑛=0

 

Now we use u-substitution:  

𝑢 = − ln(𝑥)⁡⁡⁡⁡⁡⁡− 𝑢 = ln(𝑥)⁡⁡⁡⁡⁡⁡⁡𝑒−𝑢 = 𝑥⁡⁡ 

−𝑒−𝑢𝑑𝑢 = 𝑑𝑥 

Remember to also change the bounds of integration.  

Upper Bound: − ln(1) = 0 

Lower Bound: − ln(0) = ∞ 

∑∫
𝑢𝑛𝑒−𝑛𝑢

𝑛!

0

∞
∙ (−𝑒−𝑢)⁡𝑑𝑢

∞

𝑛=0

 














































































































Notice how we need to swap the upper and lower bounds of the integral. This can be done by 
negating the integral. 

∑∫
𝑢𝑛𝑒−𝑛𝑢

𝑛!

∞

0
∙ (𝑒−𝑢)⁡𝑑𝑢

∞

𝑛=0

 

∑∫
𝑢𝑛𝑒−(𝑛+1)𝑢

𝑛!

∞

0
⁡𝑑𝑢

∞

𝑛=0

 

Doing another u-substitution:  

𝑣 = (𝑛 + 1)𝑢⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑑𝑣 = (𝑛 + 1)𝑑𝑢 

∑∫
𝑣𝑛

(𝑛 + 1)𝑛 ∙
𝑒−𝑣

𝑛! ∙
𝑑𝑣

𝑛 + 1

∞

0

∞

𝑛=0

 

The first two terms with n in the denominator can be treated as constants so we can pull them 
outside of the integral.  

∑
1

𝑛! (𝑛 + 1)𝑛+1
∫ 𝑣𝑛𝑒−𝑣𝑑𝑣

∞

0

∞

𝑛=0

 

Notice we have the Gamma Function, so we can replace the entire integral expression with 𝑛! 

∑
1

𝑛! (𝑛 + 1)𝑛+1 ∙ 𝑛!
∞

𝑛=0

 

∑
1

(𝑛 + 1)𝑛+1

∞

𝑛=0

 

If we start at 𝑛 = 1 instead of 𝑛 = 0, then we can change 𝑛 + 1 to 𝑛.  

∑
1
𝑛𝑛

∞

𝑛=1

 

∑𝑛−𝑛
∞

𝑛=1

 

∫ 𝑥−𝑥
1

0
𝑑𝑥 = ∑𝑛−𝑛

∞

𝑛=1

 

When we evaluate this integral, we find that the answer is the same as the integral in the form of 
a summation.  














































































































Conclusion  

Non-elementary antiderivatives are extraordinarily complex and require careful manipulation 
and a comprehensive understanding of calculus and further techniques such as Feynman’s 
Technique and Laplace Transforms.  
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