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1. Introduction

One of the most famous equations in all of mathematics is Euler’s Identity,
eiθ = cos(θ) + i sin(θ). This has applications in all fields of math as well as physics
and engineering and allows to represent complicated functions with both real and
complex parts as a sum of the real parts and imaginary parts.

The focus of this paper is to prove Euler’s formula and identity in order to
provide intuition into where it came from and how it can be used. There are many
applications including systems of differential equations, which will be demonstrated
later in this paper.

2. Proof

Recall that a function can be replicated at an x coordinate a (such that a ∈ R)
using a function and its derivatives, as long as a function is continuous and has n
derivatives on an interval. Functions that have Taylor Series are contained in the
set:

S = {f : R → R | f is infinitely differentiable at a, a ∈ R, f(x) =
∞∑

n=0

fn(a)

n!
(x− a)

n}

Since ex, sinx, and cosx ∈ S, Taylor Series of these functions can be made, us-
ing polynomials to approximate them. While not all functions have a Taylor Series
that converges at all values, ex, sinx, and cosx all have a radius of convergence
that equals infinity.1 The Taylor series for ex, sinx, and cosx are as follows.

(1) ex centered at x = 0

ex ≈ 1 + x+
x2

2!
+

x3

3!
+ . . .

xn

n!

(2) sin(x) centered at x = 0

sin(x) ≈ x− x3

3!
+

x5

5!
+ . . .+ (−1)

n x2n+1

(2n+ 1)!

(3) cos(x) centered at x = 0

cos(x) ≈ 1− x2

2!
+

x4

4!
+ . . .+ (−1)

n x2n

(2n)!

Proof of Euler’s Formula. Substituting x with ix, we obtain a Taylor Series for eix.

eix = 1 + ix + (ix)2

2! + (ix)3

3! + (ix)4

4! + (ix)5

5! + . . . (ix)n

n! . Simplifying the powers of i

using i2 = −1 allows us to rewrite the identity.

Simplifying gives us eix = 1+ ix− x2

2! −
ix3

3! + x4

4! −
ix5

5! + x6

6! . From this, one can
see that the terms with an even power of x do not have an imaginary part and the
odd powered terms contain a factor of i. Separating this equation by the real and

imaginary parts gives us: eix = [1− x2

2! +
x4

4! −
x6

6! + . . .+(−1)
n x2n

(2n)! ]+i[x− x3

3! +
x5

5! =

x7

7! + . . .+ (−1)
n x2n+1

(2n+1)! ].

The Taylor expansion of eix results in the expansions for sinx and cosx appear-
ing, with cos occupying the real part and sin having an imaginary factor i. The final
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identity can now be written: eix = cosx+ i sinx . It is also commonly written in

terms of θ instead of x due to its use in complex analysis: eiθ = i sin θ + cos θ.
Using Euler’s Identity, Euler’s Formula (eiπ + 1 = 0) can be derived. Plugging

in π to eiθ = cos θ + i sin θ: eiπ = cosπ + i sinπ. Therefore, eiπ = −1, or more

commonly written as eiπ + 1 = 0 . □

3. Application in Systems of Differential Equations

Consider the following system of differential equations:

dx1

dt
= −x2,

dx2

dt
= x1.

Representing the system with a matrix A:

A =

[
0 −1
1 0

]
.

We can solve this system by finding the eigenvalues and eigenvectors. The char-
acteristic polynomial for this matrix is:

det(A− λI) = det

[
−λ −1
1 −λ

]
.

Expanding the determinant gives:

p(λ) = λ2 + 1.

Setting p(λ) = 0 gives the eigenvalues:

λ = ±i.

The eigenvector for λ1 = i is:

v⃗1 =

[
1
−i

]
.

If a + bi is an eigenvalue with eigenvector v⃗1 = r⃗ + is⃗, then a − bi is also an
eigenvalue with eigenvector v⃗2 = r⃗ − is⃗. Using this, we find the eigenvector for
λ2 = −i:

v⃗2 =

[
1
i

]
.

Note that the matrix representing the coefficients of the system of differential
equations is non-defective because the algebraic multiplicity equals the geometric
multiplicity for all λi. In other words, each eigenspace is spanned by its eigenvector,
and the eigenvectors from each eigenvalue form a basis for the eigenspace.

Now that we have the eigenvalues and eigenvectors for this system, we can obtain
both solutions using just one of the eigenvalues and its corresponding eigenvector,
thanks to Euler’s Identity.

The general solution to this system is:

y(t) = c1e
it

[
1
−i

]
+ c2e

−it

[
1
i

]
.
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However, due to Euler’s Identity, we can use only one of the eigenvalues and

eigenvectors to derive two solutions. Using λ1 = i and v⃗1 =

[
1
−i

]
, we separate the

eigenvector into its real and imaginary parts:[
1
−i

]
=

[
1
0

]
+ i

[
0
−1

]
.

Using Euler’s Identity, we can rewrite eit as cos(t) + i sin(t). Grouping the real
part of the eigenvector with the cos term and the imaginary part with the sin term
we get:

y(t) = cos(t)

[
1
0

]
− sin(t)

[
0
1

]
The solution matrix to this system of differential equations is:

y(t) =

[
cos(t) sin(t)
− sin(t) cos(t)

]

4. Final Thoughts

This has many extensions and allows us to view many concepts that weren’t
otherwise tangible, such as the log of a negative number. Consider ln(−1). This
is something that is undefined, but using Euler’s Formula, we can define it. Using
eiπ = −1, we can take the natural log of both sides resulting in: iπ = ln(−1).
Euler’s Identity and Formula are very powerful and have applications in many
fields.

Additionally, Euler gave us a way of reimagining the complex plane. Consider
the real axis as the x-axis and the complex axis as the y-axis. Since we know
from the unit circle (circle with r = 1) that the Cartesian plane can be thought of
in terms of trigonometric function: sin and cos, we can extend this to a complex
case. Even though Euler’s Identity eiθ = cos θ + i sin θ, is not intuitively visual,
representing it on a complex plane using a circle allows for even more intuition into
where it came from and how it can be used.

Re

Im

θ

eiθ

cos θ

sin θ

0

Figure 1. Illustration of eiθ in the complex plane.
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As seen in Fig. 1, Euler’s Identity is very powerful and allows us to describe
complex functions. By being able to represent complex functions visually using
functions we are comfortable with, Euler allowed us to further study complex func-
tions, which have many applications in the real world.

Appendix A. Radius of Convergence of Taylor Series

In this appendix, we provide the proofs of the radius of convergence for the
Taylor series expansions of ex, sinx, and cosx.

A.1. Taylor Series for ex. The Taylor series for ex is:

ex =

∞∑
n=0

xn

n!
.

To find the radius of convergence, we apply the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
1

(n+1)!

1
n!

∣∣∣∣∣ = lim
n→∞

1

n+ 1
= 0.

Since the limit is 0, the series converges for all x, implying the radius of convergence
is R = ∞.

A.2. Taylor Series for sinx. The Taylor series for sinx is:

sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

Using the ratio test, we consider the general term:

an =
(−1)nx2n+1

(2n+ 1)!
.

The ratio is:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
x2(n+1)+1

(2(n+1)+1)!

x2n+1

(2n+1)!

∣∣∣∣∣∣ = lim
n→∞

x2

(2n+ 3)(2n+ 2)
= 0.

Thus, the radius of convergence is R = ∞.

A.3. Taylor Series for cosx. The Taylor series for cosx is:

cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
.

Similarly, using the ratio test:

an =
(−1)nx2n

(2n)!
.

The ratio is:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
x2(n+1)

(2(n+1))!

x2n

(2n)!

∣∣∣∣∣∣ = lim
n→∞

x2

(2n+ 2)(2n+ 1)
= 0.

Again, the radius of convergence is R = ∞.


