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Chapter 1 – Limits and Continuity  

To understand calculus, we have to know what a limit is and how to evaluate them. Limits are written 

as: lim
𝑥→𝑎

𝑓(𝑥). This is read as “the limit as x approaches a of f(x). In this case a is an arbitrary number. 

Limits help us find the actual value of a function at a point.  

 

First, we need to know whether a function is continuous or discontinuous. A function is continuous if 

you can sketch it without having to pick up your pen. If you must pick up your pen, the function is 

discontinuous.  

 

                

Fig 1. Graph of a continuous function (𝒙𝟑)    Fig 2. Graph of a discontinuous function 

As seen in Figure 1, this function can be graphed without picking up your pen, whereas Figure 2 cannot. 

Figure 1 shows a function that would be continuous, and Figure 2 shows a function that is not 

continuous. There are a handful of types of discontinuities. The first is known as a vertical asymptote. 

A vertical asymptote is a vertical line where the function will have no values. Figure 2 shows a vertical 

asymptote at x=0. The way we find vertical asymptotes is to see where a function would be equal to 0 in 

the denominator.  

 

For example, we have the function 𝑓(𝑥) =
1

(𝑥−3)
. The way we find the vertical asymptote is by setting 

the denominator equal to zero.  

𝑥 − 3 = 0 

𝑥 = 3 

The vertical asymptote for this function is x=3. Vertical asymptotes are always found this way. The next 

time of discontinuity is a hole. This is considered a removable discontinuity. This means that there can’t 

be a value at this point. This is found by being able to cancel something out. For example:  
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𝑓(𝑥) =
(𝑥 − 3)

(𝑥 + 3)(𝑥 − 3)
 

In this case, we can cancel out (x-3). This means there is a hole at x=3. We can find the f(x) value of this 

hole by removing the (x-3) term and plugging 3 into the new function that we’ll call g(x).  

𝑔(𝑥) =
1

(𝑥 + 3)
 

Plugging x=3 into our new function we get 𝑔(3) = 1/6. This means we have a hole at (3, 1/6).  

 

  

Now that we understand the two types of discontinuities (vertical asymptotes and holes), we can move 

onto finding limits. For a limit to exist, the left-handed and right-handed limit have to be equal to each 

other.  

𝐼𝑓: lim
𝑥→𝑎+

𝑓(𝑥) = lim
𝑥→𝑎−

𝑓(𝑥) 

𝑇ℎ𝑒𝑛: lim
𝑥→𝑎

𝑓(𝑥) = 𝑐 

∗ 𝑁𝑜𝑡𝑒: 𝑐 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑜𝑟 ± ∞.  

If you’re confused about this, don’t worry. Limits have a “left-hand” and a “right-hand”. All this means 

is the value of the limit from the left of the point and from the right of the point. For a limit to exist, the 

left-hand and the right-hand must have the same value.  

 

Let’s look at this through a simple example. Let’s look at f(x)=x.  

Fig 3. The graph of f(x) with a hole 

at x=3.  

As we can see from this graph, there 

is a hole at x=3. We use the new 

function g(x) to find the f(x) value of 

the hole since we cannot directly 

substitute the x value of the hole into 

the original function, f(x).  
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Fig 4. Graph of f(x)=x. 

Let’s find the limit as x approaches 3 or: lim
𝑥→3

𝑥. We can look at the graph and know that this limit is 

equal to 3. However, for this to be true, the limits from the left and right have to both be 3. If we look 

from the left, we can take a point very close to three like 2.99999. This limit is extraordinarily close to 3 

and since this will keep on going, it will get to 3. The same goes for the right side. If we take the limit as 

x approaches 3.000001, the limit will be equal to 3. Since both limits equal 3, lim
𝑥→3

𝑥 = 3. For limits like 

this, there is a much simpler way of evaluating them. The simplest way of evaluating limits is by direct 

substitution. Direct substitution simply means plug in the number the limit is approaching into the 

function.  

lim
𝑥→4

𝑥2 

𝑓(4) = (4)2 

lim
𝑥→4

𝑥2 = 16 

The next method for evaluating limits is by rationalizing. Rationalizing is getting rid of a radical by 

multiplying the numerator and denominator by the radical. The way you know you need to rationalize is 

if you try direct substitution and it fails. It fails if you get an indeterminate form. Examples of 

indeterminate forms are 
0

0
,

∞

∞
, 𝑎𝑛𝑑 

−∞

−∞
. If you get an indeterminate form, it means the method you’re 

using to solve can’t solve said problem.  

 

What happens when we have:  

lim
𝑥→25

5 − √𝑥

25 − 𝑥
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If we try to directly substitute 25 in for x, we get 0/0 which is an indeterminate form. This tells us that 

we can’t solve this limit this way, but it can be solved another way. We can solve this limit by 

rationalizing.  

lim
𝑥→25

5 − √𝑥

25 − 𝑥
∙

(5 + √𝑥)

(5 + √𝑥)
 

Multiplying by the conjugate pair of 5 − √𝑥 will get rid of the square root.  

lim
𝑥→25

(25 − 𝑥)

(25 − 𝑥)(5 + √𝑥)
 

This then gives us:  

lim
𝑥→25

1

5 + √𝑥
 

Now, we can directly plug-in 25 to the limit.  

1

5 + √25
=

1

10
 

Therefore,  

lim
𝑥→25

5 − √𝑥

25 − 𝑥
=

1

10
 

 

Another way of solving limits that don’t work with direct substitution is by factoring.  

lim
𝑥→1

𝑥3 − 1

𝑥 − 1
 

If we plug in 1, we get 0/0. However, we can factor the numerator by using the difference of two perfect 

cubes. Giving us:  

lim
𝑥→1

(𝑥 − 1)(𝑥2 + 𝑥 + 1)

𝑥 − 1
 

We can now reduce and directly substitute x=1.  

lim
𝑥→1

(𝑥2 + 𝑥 + 1) 

(1)2 + 1 + 1 = 3 

lim
𝑥→1

𝑥3 − 1

𝑥 − 1
= 3 

(These properties are very notation heavy. They are very simple when you use them so try not to get 

overwhelmed by the notation of them.) 
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Next up are some important properties of limits we need to know.  

1. lim
𝑥→𝑎

𝑐 = 𝑐 𝑤ℎ𝑒𝑟𝑒 𝑐 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

2. lim
𝑥→𝑎

𝑓(𝑥) + 𝑔(𝑥) = lim
𝑥→𝑎

𝑓(𝑥) + lim
𝑥→𝑎

𝑔(𝑥) 

3. lim
𝑥→𝑎

𝑓(𝑥) − 𝑔(𝑥) = lim
𝑥→𝑎

𝑓(𝑥) − lim
𝑥→𝑎

𝑔(𝑥) 

4. lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

lim
𝑥→𝑎

𝑓(𝑥)

lim
𝑥→𝑎

𝑔(𝑥)
 

5. lim
𝑥→𝑎

𝑐𝑓(𝑥) = 𝑐 lim
𝑥→𝑎

𝑓(𝑥) 𝑤ℎ𝑒𝑟𝑒 𝑐 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   

Property number five is known as the constant multiple rule and will be seen again as we continue our 

study of calculus.  

Example of property 1.  

lim
𝑥→3

6 = 6 

Since f(x)=6 is simply a straight horizontal line, the limit at any point will be 6. This is the same for the 

limit of any horizontal line.  

Example of property 2.  

lim
𝑥→1

𝑥 + 𝑥2 = lim
𝑥→1

𝑥 + lim
𝑥→1

𝑥2 

= 1 + 1 = 2 

Example of property 3.  

lim
𝑥→4

𝑥 − 𝑥2 = lim
𝑥→4

𝑥 − lim
𝑥→4

𝑥2 

= 4 − 16 = −12 

Example of property 4.  

lim
𝑥→3

1

𝑥
=

lim
𝑥→3

 1

lim
𝑥→3

 𝑥
 

=
1

3
 

Notice how the numerator uses property number 1.  

 

Example of property 5.  

lim
𝑥→2

3𝑥2 = 3 lim
𝑥→2

𝑥2  

= 3(4) = 12 
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There are two important limit identities we need to know. The first one is:  

lim
𝑥→0

sin 𝑥

𝑥
= 1 

 

 

Fig. 5 The graph of 
𝐬𝐢𝐧 𝒙

𝒙
.  

x f(x) 

-0.0001 0.999 

0.0001 0.999 

Table 1. x and f(x) values near 0 of 
𝐬𝐢𝐧 𝒙

𝒙
.  

 

The other identity is: lim
𝑥→0

1−cos 𝑥

𝑥
= 0 

 

 

Fig 6. The graph of 𝐥𝐢𝐦
𝒙→𝟎

𝟏−𝐜𝐨𝐬 𝒙

𝒙
 .                                    Table 2. x and f(x) values         

     near 0 of 𝒇(𝒙)
𝟏−𝐜𝐨𝐬 𝒙

𝒙
                                     

As shown in the graph, the limit as x approaches zero is equal to zero. We also see in the table that when 

we plug in a number that is very close to zero, we get a number that is very tiny and close to zero.  

______________________________________________________________________________ 

x f(x) 

-0.0001 4.9E-05 

0.0001 4.9E-05 

As we can see from Figure 5, at x=0, f(x)=1 which verifies this limit. 

We can also verify this limit by taking a number very close to 0 from 

the left and right side. From the left, we can use -0.0001 and from the 

right we can use 0.0001. If we were to take values closer and closer to 

0, we see from Table 1 that at x=0, the limit is equal to 1. This is 

another way of finding limits by using a table. We can take values that 

get closer and closer to the desired value to find the limit.  
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Next up is evaluating limits at infinity. This is a little trickier than the previous limits we’ve been doing 

but it is not too challenging.  

 

First off, we need to understand what a horizontal asymptote is and how we can find them. A horizontal 

asymptote is an imaginary horizontal line that the function will level off at as the function goes towards 

positive and negative infinity. Note that a horizontal asymptote can sometimes be crossed by a function, 

but a vertical asymptote will never be crossed. If a function crosses the horizontal asymptote, it will be 

near the origin of the function. As the function goes towards positive and negative infinity, it will obey 

the horizontal asymptote. This is important for when we take the limit as x approaches positive or 

negative infinity.  

 

There are three different scenarios that will determine if a function has a horizontal asymptote.  

Scenario Number Function Horizontal 

Asymptote 

Example 

1 𝑥𝑎

𝑥𝑏
𝑤ℎ𝑒𝑟𝑒 𝑎 > 𝑏 

None 
𝑓(𝑥) =

𝑥3

𝑥2
 

2 𝑥𝑎

𝑥𝑏
𝑤ℎ𝑒𝑟𝑒 𝑎 < 𝑏 

𝑦 = 0 
𝑓(𝑥) =

𝑥2

𝑥3
 

3 𝑥𝑎

𝑥𝑏
𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑏 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑎/𝑏 
𝑓(𝑥) =

𝑥3 + 𝑥2

𝑥3
 

Table 3. Types of horizontal asymptotes  

Functions that have horizontal asymptotes will always take one of those three forms. In scenario number 

one, this function is what we call “top-heavy”, meaning that the numerator will outweigh the 

denominator. Since this happens, there is no horizontal asymptote. The next scenario is if the highest 

power of the numerator is greater than the highest power of the denominator. This is known as a 

“bottom-heavy” function. This has the horizontal asymptote y=0. The third scenario is if the highest 

power of the numerator and denominator are equal. In this case, the horizontal asymptote is the ratio of 

the coefficients of the highest powers.  

                                            

Fig 7. Example of scenario 1                                          Fig 8. Example of scenario 2 
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Fig 9. Example of scenario 3 

 

Now that we understand horizontal asymptotes, we can now evaluate some limits at infinity. When the 

limit is asking you to evaluate as x approaches positive or negative infinity for these functions, you 

simply need to see what the horizontal asymptote is for that function. 

lim
𝑥→∞

𝑥2

𝑥3
= 0 

Since this function has a horizontal asymptote at y=0, as x approaches infinity, the limit will be equal to 

0.  

lim
𝑥→∞

𝑥3

𝑥2
= 𝐷𝑁𝐸 

This function has no horizontal asymptote since the highest power of the numerator is greater than that 

of the denominator. This means that as x approaches infinity, y is increasing without bounds therefore 

the limit does not exist.  

lim
𝑥→∞

𝑥3

𝑥3
= 1 

Similarly, to the first example, we just need to look at the horizontal asymptote to find this limit. Since 

the highest powers are the same, the asymptote is y=1, therefore this limit is equal to 1.  

Now, what if we want to find the limit as x approaches 0 of 
1

𝑥2. In this case, none of the previous 

methods will work. Direct substitution will result in an indeterminate form, and we can’t factor or 

rationalize. In this case, we will have to use a table.  

 

x f(x) 

As we can see from Figure 7, there is no horizontal 

asymptote because the function increases without 

bounds as it goes from negative infinity to infinity. In 

Figure 8, since the denominator is greater than the 

numerator, the horizontal asymptote is y=0. In Figure 9, 

the highest power of the numerator is the same as the 

highest power of the denominator. In this case, the 

asymptote is the ratio of those coefficients or y=1/1.  
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As we can see from this table, when we plug in numbers really close to zero, we get 

large numbers. Since both sides of the limit agree, this limit is equal to infinity. 

However, if a limit is equal to infinity or negative infinity, the limit does not exist 

(DNE) because it increases without bounds.  

 

 

Table 4. x and f(x) values near 0 

 

The next time of limit is that a limit that approaches infinity of an exponential function. For example, if 

we have some exponential function 𝑎𝑥 (where a is a constant), the limit as x approaches infinity for all 

positive a values, will be equal to zero if a < 1.  

 

lim
𝑥→∞

1

2

𝑥

 

      

Fig 10. Graph of (
𝟏

𝟐
)𝒙 

 Next up is the limit of a piecewise function. Piecewise functions are functions that are defined by 

several equations with bounds. Each equation has a domain restriction. Piecewise functions are written 

like this:  

𝑓(𝑥) = {
−𝑥, 𝑥 < 0

𝑥, 𝑥 ≥ 0
 

This function is the same as 𝑓(𝑥) = |𝑥|. We can use piecewise functions to break up complicated 

functions and make them simpler. We can also take limits of piecewise functions. For example, let’s say 

we wanted to take a limit of this piecewise function.  

lim
𝑥→4

𝑓(𝑥) 

In this case, we need to look at the domain restriction of the piecewise to find which part of the 

piecewise we need to use to evaluate this limit. Since 4 is ≥ 0, we will use f(x)=x. We can simply plug in 

4 directly to get:  

lim
𝑥→4

𝑓(𝑥) = 4 

 

-

0.0001 

1E8 

0.0001 1E8 

As we can see from Figure 10, this limit quickly approaches 0. 

If we were to have the limit approach negative infinity, the 

limit would not exist.  
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A Summary of Limits  

Limits are very useful in our study of calculus and will continue to show up as go through the subject. A 

limit allows us to find the precise value of a function at a certain point, even if the point does not exist.  

 

Ways to find limits: 

1. Direct Substitution – Plug the number from the limit directly into the function to get what the 

limit is equal to.  

2. Factoring – Factor the expression to try to remove a term that will make direct substitution 

possible.  

3. Rationalize – Multiply by the conjugate pair of a square root term to try to make direct 

substitution possible.  

4. Table of Values – if the first three ways are not possible, make a table of values where you take a 

number very close to the limit to see the behavior of the function at that point. If the limit is 

going towards ±infinity, plug in a really big positive or negative number to see the behavior of 

the function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


